On the Importance of Phenotypic Duplicate Elimination in Decoder-Based Evolutionary Algorithms

نویسندگان

  • Günther R. Raidl
  • Jens Gottlieb
چکیده

Premature convergence is a serious problem in many applications of evolutionary algorithms (EAs), since it decreases the EA’s chance to reach new high-quality regions of the search space and hence degrades the overall performance. In particular decoder-based EAs are frequently susceptible to premature convergence due to their encoding redundancy. Our comparison of four decoder-based EAs for the multidimensional knapsack problem reveals the importance of maintaining the population’s phenotypic diversity. We identify phenotypic duplicate elimination as a general method which efficiently prevents premature convergence for most EAs, while duplicate elimination on genotypic level is demonstrated as being unable to maintain phenotypic diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem

The performance of decoder-based evolutionary algorithms (EAs) strongly depends on the locality of the used decoder and operators. While many approaches to characterize locality are based on the fitness landscape, we emphasize the explicit relation between genotypes and phenotypes. Statistical measures are demonstrated to reliably predict locality properties of selected decoder-based EAs for th...

متن کامل

Appraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories

Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...

متن کامل

Estimation of LPC coefficients using Evolutionary Algorithms

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999